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The hidden Markov model (HMM) provides a framework to model the time-varying effects of
marketing mix variables. When employed in a panel data context, it is important to properly
account for unobserved heterogeneity across individuals. We propose a new random coeffi-
cients mixture HMM (RCMHMM) that allows for flexible patterns of unobserved heterogeneity
in both the state-dependent and transition parameters. The RCMHMM nests all HMMs found in
the marketing literature. Results of two simulation studies demonstrate that 1) averaging
across a large number of different data generating processes, the RCMHMM outperforms all
its nested versions using both in-sample and out-of-sample performance and 2) the
RCMHMM is more robust than its nested versions when underlying model assumptions are vi-
olated. In addition, we apply the RCMHMM to an empirical application where we examine the
effectiveness of in-game promotions in increasing the short-term demand for Major League
Baseball (MLB) attendance. We find that the effectiveness of four promotional categories varies
over the course of the season and across teams and that the RCMHMM performs best.
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1. Introduction

The hidden Markov model (HMM) has made significant inroads into marketing over the past three decades (e.g., Montgomery,
Li, Srinivasan, & Liechty, 2004; Netzer, Lattin, & Srinivasan, 2008; Poulsen, 1990). The HMM enables researchers to model the time-
varying effects of marketing mix variables via the formulation of unobserved (or hidden) states. The HMM allows for different pa-
rameters for the group of observations that belong to each hidden state (state-dependent equation) as well as switching between
hidden states over time (transition equation). Recent work has increased the value of the HMM in marketing by incorporating un-
observed heterogeneity across individuals (e.g., Montoya, Netzer, & Jedidi, 2010; Schweidel & Knox, 2013), which may be present
in both the state-dependent and transition parameters. Unobserved heterogeneity exists in many marketing applications
(e.g., panel data) and failure to account for it leads to biased parameters and inaccurate managerial insights (see Netzer, Ebbes,
& Bijmolt, 2016 for a discussion of the consequences of ignoring unobserved heterogeneity in the HMM).

While past research incorporates some patterns of unobserved heterogeneity into the HMM (e.g., random coefficients or latent
classes), this body of work largely ignores the comparative performance of various alternative forms of unobserved heterogeneity
in the state-dependent and transition parameters. An improper representation of the heterogeneity structure can lead to biased
inferences (Hsiao, 2003)—especially in dynamic models, such as HMMs, where disentangling unobserved heterogeneity and
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state dependence can be challenging (Heckman, 1991; Hyslop, 1999). If an HMM fails to properly account for unobserved hetero-
geneity, the effects are picked up by the dynamic elements of the model, which leads to incorrect conclusions about the time-
varying effects.

We contribute to the marketing and HMM literatures by proposing a new random coefficients mixture HMM (RCMHMM) that
allows for flexible patterns of unobserved heterogeneity in both the state-dependent and transition parameters. To achieve this
flexibility, we draw on the random coefficients mixture (RCM) model (see Allenby, Arora, & Ginter, 1998; Lenk & DeSarbo,
2000). The RCM model combines the flexibility of semi-parametric latent class models and allows for parametric variation in
the parameters within latent classes through the formulation of random coefficients. Incorporating an RCM representation of un-
observed heterogeneity in both the state-dependent and transition parameters within an HMM framework makes it possible to
nest all HMMs in the marketing literature and compare model performance of the RCMHMM to its 16 nested versions (combining
homogenous, random coefficients, latent classes, and individual-specific independent state-dependent and transition parameters).
Thus, the RCMHMM enables researchers to identify and select the optimal heterogeneity structure using a single model structure,
reducing parameter bias.

We compare the performance of the RCMHMM to its 16 nested versions in two simulation studies. First, we estimate all 17
models on 17 corresponding datasets. Averaging across datasets, the RCMHMM outperforms its nested model versions and
often results in a more parsimonious model (requiring fewer latent classes and hidden states to explain the data). The HMM
with random coefficients for both the state-dependent and transition parameters (i.e., the state-of-the-art HMM in marketing) per-
forms second-best. Comparing these two models, the RCMHMM performs better when the unobserved heterogeneity structure is
multimodal (i.e., the data includes latent classes or an RCM distribution). When the unobserved heterogeneity structure is
unimodal, both models have similar performance (as the RCMHMM perfectly nests the HMM with random coefficients for both
the state-dependent and transition parameters), and there is no need to formulate the more complex RCMHMM. In general, the
additional flexibility of the RCMHMM can be somewhat harmful when there is little unobserved heterogeneity in the data. Second,
we examine what happens with different data dimensions and when the underlying model assumptions are violated. RCMHMM
performance improves with more time periods and is more robust to different data generating processes; specifically, when an
omitted variable is present, or when the error distribution is misspecified. Importantly, these two simulation studies show that
using an incorrect form of unobserved heterogeneity biases parameter estimates. The RCMHMM enables researchers to minimize
such bias by nesting 16 HMMs and selecting the model that most accurately reflects the unobserved heterogeneity structure in the
data.

We also use the RCMHMM and its 16 nested versions to examine the effectiveness of in-game promotions in increasing the
short-term demand for Major League Baseball (MLB) attendance. This empirical application is an ideal context, as past attendance
research provides preliminary evidence that promotional effectiveness varies over time (Boyd & Krehbiel, 1999; Lemke, Leonard, &
Tlhokwane, 2010) (facilitating hidden states) and across teams (Lemke et al., 2010; Marcum & Greenstein, 1985) (facilitating la-
tent classes). We find that promotional effectiveness varies over the course of the season and across teams and that the RCMHMM
performs best.

We organize the remainder of the article as follows. First, we review past research on incorporating unobserved heterogeneity
into HMMs. Next, we present our RCMHMM along with the estimation procedure and predictive validation techniques to deter-
mine the best model. Then, we test the RCMHMM in two simulation studies and an empirical application. Finally, we highlight
practical and methodological implications and discuss directions for future research.
2. Unobserved heterogeneity in HMMs

2.1. Modeling unobserved heterogeneity

Properly incorporating unobserved heterogeneity into a marketing model satisfies both practical and methodological concerns.
From a practical standpoint, modeling heterogeneity is important to managers, so they can make inferences for individual con-
sumers, stores, demographic market areas—or, as in our empirical application, teams (Allenby & Rossi, 1998). From a methodolog-
ical standpoint, ignoring unobserved heterogeneity across individuals or incorporating an improper representation of the
heterogeneity structure can lead to biased inferences (Dubé, Hitsch, & Rossi, 2010; Hsiao, 2003; Lenk & DeSarbo, 2000). This prob-
lem is even more severe in dynamic models, such as HMMs (Heckman, 1991; Hyslop, 1999). Deciding which heterogeneity struc-
ture to use can be difficult, as the true nature of the unobserved heterogeneity is usually unknown a priori and the selection of a
discrete or continuous distribution is largely an empirical issue (Andrews, Ansari, & Currim, 2002; Michalek, Ebbes, Adigüzel,
Feinberg, & Papalambros, 2011; Otter, Tüchler, & Frühwirth-Schnatter, 2004). Typically, a discrete distribution leads to a latent
class model and a continuous distribution leads to a random coefficients model (Wedel et al., 1999). A third and more flexible rep-
resentation of unobserved heterogeneity is the RCM model (Allenby et al., 1998; Lenk & DeSarbo, 2000), which combines the flex-
ibility of the semi-parametric latent class model and allows for parametric variation within the latent classes through the
formulation of random coefficients.1 The RCM model can capture skewed and multimodal distributions of unobserved heterogene-
ity and can accommodate both discrete and continuous forms of unobserved heterogeneity in the data (Lenk & DeSarbo, 2000).
1 This model is also known as the Bayesian mixture approach and the mixture-of-normals model.
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Past marketing research shows that the RCM model outperforms its nested random coefficients and latent class models
(Chandukala, Long-Tolbert, & Allenby, 2011; Mehta, Chen, & Narasimhan, 2010; Michalek et al., 2011; Otter et al., 2004).

Note that other flexible specifications exist to capture unobserved heterogeneity. The simplest way to account for unobserved
heterogeneity is to include fixed or random effects to control for individual differences; however, these models assume that the
effects of independent variables are similar across individuals. Although not yet employed in HMMs, more sophisticated ap-
proaches exist. For example, researchers can use Dirichlet process priors (e.g., Ansari & Mela, 2003; Voleti & Ghosh, 2013) to
model the distribution of the population parameters in a semiparametric way (instead of assuming a parametric normal distribu-
tion, which is common in modeling random coefficients). Another flexible specification is a model where each coefficient has its
own finite mixture (Ebbes, Liechty, & Grewal, 2015). Both approaches are promising and can be incorporated within an HMM.
However, we focus on the RCM specification because it provides the additional flexibility needed to nest all unobserved heteroge-
neity structures found in prior HMMs in the marketing literature—enabling researchers to directly compare model performance
against all existing HMMs.

2.2. HMMs

An HMM consists of three parts: the state-dependent equation, the transition probability equation, and the initial state
probabilities (Hamilton, 1989; Zucchini, MacDonald, & Langrock, 2016). We begin by specifying the linear state-dependent
equation:
Pleas
tiona
Yit j Sit ¼ sð Þ ¼ β0
isXit þ εit; ð1Þ
where Yit is the dependent variable for individual i at time t, conditional on individual i belonging to hidden state s ∈ {1,…,S}
at time t. βis is a Kx1 individual- and state-specific vector of parameters measuring the impact of the Kx1 vector of explanatory
variables Xit. Finally, εit represents the error term.

The states are unobserved and follow a first-order Markov process. The transition probability, pitss′, represents the probability of
switching from state s to s′ for individual i at time t. We define the transition probability matrix as:
Pi;t−1→t ¼
pit11 ⋯ pit1S
⋮ ⋱ ⋮

pitS1 ⋯ pitSS

2
4

3
5; ð2Þ
with 0 ≤ pitss′ ≤ 1 and ∑l=1
S pitsl = 1, ∀ s. We specify the transition probabilities as a multinomial logit model, where the transition

parameters are a function of time-varying explanatory variables and individuals can transition freely between hidden states:
pitss0 ¼
exp γ0

iss0Wit

� �

1þ
XS

l¼2
exp γ0

islWit

� � ; for s ¼ 1…S; ð3Þ
where Wit represents a vector of transition variables, including a constant. The parameter vector γiss′ measures the impact of these
transition variables for a move from state s to state s′ for individual i. Finally, we define the initial state probabilities, πs, where
0 ≤ πs ≤ 1 and ∑s=1

S πs = 1.
Researchers can incorporate unobserved heterogeneity in the HMM in both the state-dependent and transition parameters. At

one extreme, we can assume parameters are homogenous across individuals; at the other, we can estimate the model separately
for each individual, leading to individual-specific independent parameters. Between these two extremes are more parsimonious
alternatives, including random coefficients, latent classes, and RCM.

1. Homogenous parameters: This model assumes all parameters are similar across individuals. This means that βis = βs in Eq. (1)
and that γiss′ = γss′ in Eq. (3).

2. Random coefficients: This model assumes that parameters differ across individuals and come from an underlying continuous distri-
bution. The individual-specific parameters typically follow amultivariate normal distribution, whichmeans that βis � MVNðβs;ΣβsÞ
in Eq. (1) and thatγiss0 � MVNðγss0 ;Σγss0 Þ in Eq. (3).When the constant is the only individual-specific parameter, thismodel results in
a random-effects model.

3. Latent classes: This model assumes that parameters in the HMM differ across individuals, each of whom belongs to one of m =
1…M latent classes. This means that βis = βms in Eq. (1) and that γiss′ = γmss′ in Eq. (3).

4. Individual-specific independent parameters: This model assumes that parameters are estimated separately for each individual
and that no relationship exists between parameters across individuals. This results in the model outlined in Eqs. (1–3).
When the constant is the only unique parameter across individuals, it is equivalent to including fixed effects.

5. RCM: This model assumes that parameters differ across individuals, each of whom belongs to one of m = 1…M latent classes.
The parameters within each latent class come from an underlying continuous distribution, which results in random coefficients
within each latent class. This means that βis = βims in Eq. (1) and that γiss′ = γimss′ in Eq. (3). Assuming these parameters come
from a multivariate normal distribution, we obtain:
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Pleas
tiona
βims � MVN βms;Σβms

� �
ð4Þ
in Eq. (1) and
γimss0 � MVN γmss0 ;Σγmss0

� �
ð5Þ
in Eq. (3) for each latent classm=1…M and hidden state s=1…S.We refer to thismodel as the RCMHMM. Thismodel nests all other
unobserved heterogeneity structures discussed above. If M = 1 and Σβms = Σγmss′ = 0, we get homogenous parameters. If M = 1,
we get random coefficients. If Σβms = Σγmss′ = 0, we get latent classes. Finally, if each individual belongs to its own “latent” class
and Σβms = Σγmss′ = 0, we get individual-specific independent parameters.

2.3. Classification of marketing literature

We performed an extensive search for HMMs in the marketing literature and classified the unobserved heterogeneity
structures of each HMM. We began with a systematic search for all articles published in the International Journal of Research in
Marketing, Journal of Marketing, Journal of Marketing Research, Marketing Science, Management Science (marketing-related studies
only), and Quantitative Marketing and Economics that estimate an HMM.2 We used the following search terms: “hidden Markov
model,” “latent Markov,” and “Markov switching.” Next, we checked references in these articles to identify any additional articles.
We identified 38 articles and classified each article based on the unobserved heterogeneity in the state-dependent and transition
parameters (see Table 1).3 In total, six of the 16 nested versions exist in the marketing literature.

The earliest HMMs in marketing contain homogenous state-dependent and transition parameters (e.g., Poulsen, 1990).
Montgomery et al. (2004) add random coefficients to the state-dependent parameters reflecting a trend in marketing research
to account for individual-level differences. Later, Netzer et al. (2008) use random coefficients to model the transition parameters,
which allows for time-varying transition probabilities. Montoya et al. (2010) include random coefficients for both the state-
dependent and transition parameters. Schweidel and Knox (2013) include latent classes for both the state-dependent and transi-
tion parameters. Lee et al. (2002) use individual-specific independent state-dependent and transition parameters. To our knowl-
edge, no marketing publications exemplify the 10 remaining combinations in Table 1.

To summarize, HMMs in past marketing research only incorporate a single unobserved heterogeneity structure in the state-
dependent and/or transition parameters and emphasize homogenous parameters and random coefficients. A recent exception es-
timates an HMM with homogenous state-dependent and transition parameters and tests whether incorporating latent classes im-
proves model performance (Zhang et al., 2016). We extend this literature with the RCMHMM, which nests all prior HMMs in
marketing and 10 additional HMMs.

2.4. Estimation

We develop a Bayesian estimation framework to estimate the RCMHMM and its 16 nested versions. We use data augmentation
to sample latent classes and hidden states (following Chib, 1996). We use random-walk Metropolis-Hastings steps to sample the
state-dependent and transition parameters. We follow Rosenthal (2011) to adapt the step size of the proposal density to ensure
that the acceptance rates stay between 0.30 and 0.35. We use Gibbs steps to sample the remaining parameters. See Web Appendix
A for the specification of priors and a technical description of the full estimation procedure.

The parameters of the RCMHMM are not uniquely identified, as the posterior is insensitive to permutations of the hidden states
and latent classes. To address this issue, we order the constants for the transition parameters in each state by size to prevent label
switching between hidden states (cf., Kumar et al., 2011) (see Step 4 in Web Appendix A for details). We use an unrestricted sam-
pler to sample the latent classes and inspect the MCMC output post hoc to determine an appropriate identifiability constraint
(Frühwirth-Schnatter, 2001) that uniquely determines the latent classes. We use the first state of the transition matrix as the ref-
erence state and assume that the parameters governing the transition to the first state equal zero.

2.5. Model comparison

We use a predictive information criterion to compare the in-sample performance of the RCMHMM and its nested models. Spe-
cifically, we use the widely applicable information criterion (WAIC) (Watanabe, 2010), which selects the best model from a larger
set based on the Kullback-Leibler information measure. The WAIC computes model fit based on the log pointwise predictive den-
sity adjusted by a penalty for the number of parameters due to overfitting. The WAIC is appropriate to compare model perfor-
mance for several reasons. First, the WAIC is asymptotically similar to Bayesian leave-one-out cross-validation—the correlation
between the WAIC and leave-one-out cross-validation was 0.996 in a simulation experiment using a finite sample of 200
excluded articles that do not empirically estimate anHMMor estimate a restrictedHMM. For example, Platzer and Reutterer (2016) estimate a buy-till-you-die
model, which is a restricted HMM with an absorbing state (however, BTYD models do not use unobserved heterogeneity structures outside of those already
Table 1).
only article we could not classify was Erdem, Imai, and Keane (2003), where the authors propose a restrictedMarkov switching process for households' usage
requently purchased consumer goods. The transition parameters are homogenous and the state-dependent parameters follow an RCM distribution.
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Table 1
Classification of unobserved heterogeneity structures in HMMs in marketing.

State-dependent
parameters

Transition parameters

Homogenous parameters Random coefficients Latent classes Individual-specific
independent parameters

Homogenous
parameters

Böckenholt and Dillon (1997) Netzer et al. (2008) – –
Brangule-Vlagsma, Pieters,
and Wedel (2002)

Shi and Zhang (2014)

Du and Kamakura (2006)
Ebbes, Grewal, and DeSarbo
(2010)
Huang, Singh, and Ghose (2015)
Poulsen (1990)
Ramaswamy (1997)
Schweidel, Bradlow, and Fader
(2011)
Shi, Wedel, and Pieters (2013)
Zhang and Feng (2011)
Zhang, Watson IV, Palmatier,
and Dant (2016)

Random coefficients Kumar, Sriram, Luo, and
Chintagunta (2011)

Ansari, Montoya, and Netzer
(2012)

– –

Lemmens, Croux, and
Stremersch (2012)

Ascarza and Hardie (2013)

Montgomery et al. (2004) Holtrop, Wieringa, Gijsenberg,
and Verhoef (2017)

Moon, Kamakura,
and Ledolter (2007)

Hui (2017)

Shachat and Wei (2012) Li, Sun, and Montgomery (2011)
van der Lans, Pieters,
and Wedel (2008)

Luo and Kumar (2013)

Zhang, Kumar,
and Cosguner (2017)

Ma, Sun, and Kekre (2015)

Mehta, Ni, Srinivasan,
and Sun (2017)
Montoya et al. (2010)
Park and Gupta (2011)
Schwartz, Bradlow, and Fader
(2014)
Schweidel, Park, and Jamal (2014)
Stüttgen, Boatwright,
and Monroe (2012)
Yang, Zhao, and Dhar (2010)
Zhang, Netzer, and Ansari (2014)

Latent classes – – Schweidel and Knox
(2013)

–

Zhang et al. (2016)
Individual-specific
independent parameters

– – – Lee, Sudhir, and
Steckel (2002)

– Indicates that the model corresponding to that cell is new to the marketing literature.
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observations (Watanabe, 2010). Given that our sample sizes are much larger, we can rely on the asymptotics and use the WAIC as
a single criterion that takes both in-sample and out-of-sample fit into account. Second, the WAIC is a fully Bayesian information
criterion which takes all MCMC draws as well as any prior information into account (Gelman et al., 2013). Third, the WAIC is a
robust criterion for singular models (e.g., HMMs, mixture models, and the RCMHMM). Alternative information criteria (e.g., AIC,
BIC, DIC) are not robust (and therefore, may be unreliable) for model selection when dealing with singular models (Watanabe,
2010). That being said, we also use the DIC (the most common metric to evaluate HMM performance in the marketing literature)
and the root mean squared prediction error (RMSPE) (which tests out-of-sample performance) to test the robustness of our
results.

3. Simulation studies: design

We design two simulation studies to answer the following questions: 1) Under which conditions does the RCMHMM beat its
nested model versions? 2) Under which conditions is the additional flexibility of the RCMHMM harmful? 3) Under which condi-
tions does the RCMHMM perform relatively better or worse? and 4) How robust is the RCMHMM when underlying model as-
sumptions are violated?

We answer the first two questions in our first simulation study by generating 17 datasets that correspond to the RCMHMM and
its 16 nested versions for 50 individuals and 50 time periods. We estimate each of the 17 models on the 17 datasets and
Please cite this article as: Kappe, E., et al., A random coefficients mixture hidden Markov model for marketing research, Interna-
tional Journal of Research in Marketing (2018), https://doi.org/10.1016/j.ijresmar.2018.07.002
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Table 2
Model selection for the 17 datasets in simulation study 1.

DGP Estimated model

Hom,
Hom

Hom,
RC

Hom,
LC

Hom,
Het

RC,
Hom

RC,
RC

RC,
LC

RC,
Het

LC,
Hom

LC,
RC

LC,
LC

LC,
Het

Het,
Hom

Het,
RC

Het,
LC

Het,
Het

RCMb

Hom, Hom 3 1a 3a 8 11 9 11 13 3a 1a 3a 7 14 16 14 17 9
Hom, RC 14 3 7 4 16 6 12 8 10 1a 13 2a 17 9 15 11 5
Hom, LC 13 3 1 5 16 7 6 10 13 2 13 4 17 11 9 12 7
Hom, Het 14 1a 3a 4 16 6 8 10 13 1a 14 4a 17 9 11 12 6
RC, Hom 14 16 14 17 1 3a 1a 8 13 10 12 11 5 7 5 9 3a

RC, RC 17 12 16 13 8 1 6 3a 14 10 15 11 9 5 7 4 1a

RC, LC 16 14 13 15 9 3 1 5 16 8 12 10 11 7 2 6 3
RC, Het 17 12 13 14 9 1a 6 4 16 8 15 11 10 7 3a 5 1a

LC, Hom 16 15 14 17 7 5 7 12 1 2a 3 4 9 11 9 13 5
LC, RC 17 15 14 16 12 7 10 5 9 1 8 2a 13 4 11 6 3
LC, LC 15 14 12 17 13 8 5 10 11 2 1 3 16 7 6 9 4
LC, Het 17 14 15 16 12 3 6 8 11 1a 10 2 13 5 7 9 3
Het, Hom 13 17 13 16 6a 1a 3a 8 13 12 11 10 4 7 4a 9 1a

Het, RC 15 13 14 11 8 3a 5 2a 15 10 17 11 9 1 6 7 3a

Het, LC 16 12 14 11 9 3 1a 7 15 12 16 10 8 5 2 6 3
Het, Het 15 11 14 12 8 1a 4a 7a 15 10 17 12 9 3a 5a 6 1a

RCM 17 14 16 15 8 2 7 3 11 9 12 10 13 5 6 4 1
Average 14.65 11.00 11.53 12.41 9.94 4.06 5.82 7.24 11.71 5.88 11.29 7.29 11.41 7.00 7.18 8.53 3.47

Notes. Hom = homogenous parameters, RC = random coefficients, LC = latent classes, Het = individual-specific independent, and RCM = random coefficients
mixture. The first abbreviation refers to the state-dependent parameters and the second refers to the transition parameters (e.g., “Hom, RC” has homogenous
state-dependent parameters and random coefficients for the transition parameters.) We rank the 17 estimated models from 1 = the best to 17 = the worst
using the WAIC. When one model is perfectly nested within another (e.g., the RCMHMM with one latent class reduces to the RC, RC model), the model fit
(and thus, rank) are the same.

a Indicates that the fit of the estimated model is not significantly different from that of the true model.
b For the estimated RCMmodels, two hidden states and one latent class fit the data best for all datasets, except when the DGP is Hom, RC; LC, RC; LC, LC; or RCM. In

these four cases, two hidden states and two latent classes fit the data best.
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determine the optimal number of latent classes (where applicable) and hidden states for each model and compare model perfor-
mance. See Web Appendix B for details on the choice of priors and parameter values.

We answer the third and fourth question in our second simulation study by modifying the data dimensions from the first study
and violating two underlying model assumptions. Specifically, we manipulate five factors (cf. Andrews et al., 2002; Ebbes et al.,
2015; Vriens, Wedel, & Wilms, 1996). The first factor is the data generating process (DGP). To keep the simulation study manage-
able, we generate data using: homogeneous, random coefficients, latent class, individual-specific independent, and RCM state-
dependent and transition parameters (i.e., the four most representative HMMs in marketing—see the diagonal in Table 1—plus
the RCMHMM). The second factor is the number of individuals in the data: 25 (low) vs. 100 individuals (high). The third factor
is the number of time periods: 25 (low) vs. 100 time periods (high). The second and third factors allow us to assess the
RCMHMM's relative performance as data dimensions change. The fourth factor is the presence of an omitted variable: absent
vs. present. Past research shows that HMMs can account for an omitted variable in the hidden states (Moon et al., 2007), so we
test whether the RCMHMM and its 16 nested versions can detect the effects of an omitted variable. The fifth factor is the error
term distribution: normal vs. gamma. The fourth and fifth factors violate two of the underlying assumptions of the RCMHMM
and allow us to test relative performance when the model is misspecified.4

Combining all five factors leads to a 5 (DGPs) × 2 (individuals) × 2 (time periods) × 2 (omitted variable) × 2 (error term)
design resulting in 80 conditions (i.e., 80 different datasets). As estimating all five models (corresponding to the five DGPs) on
each condition is computationally expensive, we reduce the number of models we estimate by generating a fractional factorial de-
sign (cf., Bodapati & Gupta, 2004; Carmone Jr, Ali, & Maxwell, 1999). This allows us to estimate the main effects for all factor levels
applied to each of the five models. This process results in 16 conditions. Applying each of the five models to these 16 conditions
results in the estimation of 80 different models, which we replicate four times each (for a total of 320 models).
4. Simulation studies: results

The results for both simulation studies are based on 100,000 iterations of the MCMC sampler—half of which we discarded for
burn-in. We retained every 25th draw (due to storage space constraints) and found no significant autocorrelation in the draws
after thinning. The Gelman and Rubin (1992) test statistic for convergence was below the 1.1 threshold for over 90% of the param-
eters in each HMM based on four independent chains with dispersed starting values, indicating convergence.
4 We do not manipulate factors related to the amount of heterogeneity within segments or the separation of the mixture components (e.g., Ansari & Mela, 2003;
Ebbes et al., 2015), as these factors only apply to the models with within-segment heterogeneity or multiple segments, respectively.
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Table 3
Model selection for the RCMHMM dataset in simulation study 1.

State-dependent parameters Transition parameters WAIC

Homogenous Homogenous (s = 8) 9813.08 (17)
Random coefficients (s = 5) 9622.01 (14)
Latent classes (m = 7, s = 2) 9680.12 (16)
Individual-specific independent (s = 8) 9624.34 (15)

Random coefficients Homogenous (s = 4) 8552.55 (8)
Random coefficients (s = 2) 8206.39 (2)
Latent classes (m = 4, s = 3) 8392.63 (7)
Individual-specific independent (s = 2) 8217.91 (3)

Latent classes Homogenous (m = 4, s = 4) 8949.88 (11)
Random coefficients (m = 6, s = 2) 8691.87 (9)
Latent classes (m = 4, s = 2) 9028.49 (12)
Individual-specific independent (m = 10, s = 2) 8692.12 (10)

Individual-specific independent Homogenous (s = 2) 9053.38 (13)
Random coefficients (s = 2) 8222.75 (5)
Latent classes (m = 6, s = 2) 8295.95 (6)
Individual-specific independent (s = 2) 8217.97 (4)

Random coefficients mixture Random coefficients mixture (m = 2, s = 2) 8171.70 (1)

Note. We provide the optimal number of latent classes (m) and hidden states (s) and rank each model from 1 = the best to 17 = the worst (in parentheses).
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4.1. Simulation study 1

We rank the 17 estimated models on each of the 17 simulated datasets (DGPs) in Table 2 using the WAIC (from 1 = best to
17 = worst). Tables WA-B2 and WA-B3 in Web Appendix B show the corresponding results using the DIC and RMSPE. Results
based on the RMSPE are very similar, and while results based on the DIC lead to similar conclusions, the DIC is less able to identify
the true model. Returning to Table 2, in cases where one model is perfectly nested within another (e.g., the RCMHMM with one
latent class reduces to the RC, RC model), the model fit (and thus, rank) are the same. For nine of the 17 cases, the best model is
the true model (i.e., there is a “1” in the Table 2). For the remaining eight cases, we calculate Akaike weights (Burnham &
Anderson, 2004) to determine whether the difference between WAIC values for the best and true model is significant. If the dif-
ference is N5.89, we conclude that the difference is significant at the 95% level. For six of the remaining cases, the difference be-
tween the best and true models is not significant. For example, when the true model has homogenous state-dependent and
transition parameters (Hom, Hom row in Table 2), the model with homogenous state-dependent parameters and random coeffi-
cients for the transition parameters (Hom, RC column) performs better. However, the WAIC for this model is not significantly dif-
ferent from the true model. Upon inspection, the population means of the transition parameters do not significantly differ from the
true model (and the population variance is near zero). For two of these eight cases, the WAIC for the true model was significantly
worse than the WAIC for the best model. In both cases, the true model includes individual-specific independent state-dependent
parameters (Het, Hom and Het, Het rows) and the best model includes random coefficients or RCM for both the state-dependent
and transition parameters (RC, RC and RCM columns). This is not entirely unexpected as the random-coefficients distribution is
much more parsimonious than the individual-specific independent parameters and this result depends on how the individual-
specific independent parameters are generated.

Next, we examine the RCMHMM simulated dataset (DGP) more closely. We provide the optimal number of latent classes and
hidden states as well as the corresponding WAIC values and rank for all 17 models (from 1 = best to 17 = worst) in Table 3 (the
RCM row in Table 2 is the same as the last column in Table 3). The RCMHMM fits the data best and recovers the true parameters,
latent classes, and hidden states. The 16 nested models only recover the state-independent parameters correctly. All other param-
eters were biased.5 Web Appendix B discusses the bias of the marketing parameters in these models in more detail. We also note
that while the RCMHMM is the most complex model, it leads to one of the most parsimonious solutions. The 16 nested models
include up to 10 latent classes and eight hidden states to compensate for the misspecification of unobserved heterogeneity.

Finally, we can answer the two questions that motivated this simulation study. First: Under which conditions does the
RCMHMM beat its nested model versions? The RCMHMM performs best across all DGPs with an average rank of 3.47 (see
Table 2). The second-best model is the HMM with random coefficients for both the state-dependent and transition parameters
with an average rank of 4.06. It is encouraging that this model is second, given that it is currently the state-of-the-art HMM in
marketing. Comparing these two models, the RCMHMM performs better when the unobserved heterogeneity structure is multi-
modal (i.e., the data includes latent classes or an RCM distribution). When the unobserved heterogeneity structure is unimodal,
both models perform similarly (as the RCMHMM perfectly nests the HMM with random-coefficients state-dependent and transi-
tion parameters). Hence, if there is evidence that the unobserved heterogeneity is unimodal, there is no need for the researcher to
specify the more complex RCMHMM and a simpler model would suffice.
5 Because we estimate our models with Bayesian techniques, the term “distortion” is more precise than “bias;” but because the insights also apply to non-Bayesian
estimation situations, we continue to use the term “bias.”
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Second: Under which conditions is the additional flexibility of the RCMHMM harmful? The RCMHMM performs relatively
worse than the true model when there is little unobserved heterogeneity in the data. Specifically, the RCMHMM performs
worse than the true model when the DGP includes either homogeneous parameters or latent classes for the state-dependent pa-
rameters or latent classes for the transition parameters (see the superscript a in the last column of Table 2). However, parameter
estimates based on the RCMHMM only show a slight bias. This is because the RCMHMM assumes some level of heterogeneity due
the presence of prior hyperparameters. Thus, we conclude that RCMHMM performance improves as the unobserved heterogeneity
structure becomes more complex (either through random coefficients or individual-specific independent parameters). However,
when this is not the case, choosing a more diffuse prior mitigates this problem.

4.2. Simulation study 2

We estimate five different models (corresponding to the four diagonal cells in Table 1 and the RCMHMM) on each condition in
the fractional factorial design. We select the optimal number of latent classes and hidden states for each model using the WAIC.
Because the size of each dataset differs across conditions, we compute the average WAIC per observation for each model. We
use the average WAIC per observation for each run i of the simulation study (WAICi) as the dependent variable and the five sim-
ulation factors as independent variables to assess how each factor affects model performance. This leads to the following regres-
sion model.
Table 4
Parame

Manip

Homo
Rando
Laten
Indivi
Rando
100 in
100 ti
Omitt
Gamm

Notes. T
cate bet

a Ind
b Ind

ture HM

Pleas
tiona
WAICi ¼ μ1DGPHomi þ μ2DGPRCi þ μ3DGPLCi þ μ4DGPHeti þ μ5DGPRCMi þ μ6100Indi þ μ7100Timei þ μ8Omittedi
þ μ9Gammai þωi:
All explanatory variables are dummies. The first five explanatory variables refer to the five DGPs. We omit a constant in this
model and rather include all five DGPs to facilitate the comparison of the parameters across the five estimated models. The last
four explanatory variables represent, respectively, the datasets with 100 (vs. 25) individuals, 100 (vs. 25) time periods, the
presence (vs. absence) of an omitted variable, and an error term with a Gamma (vs. normal) distribution. We run this model sep-
arately for each of the five estimated models and the results are in Table 4 (where lower values indicate better performance). For
example, the first row of Table 4 shows how each of the five estimated models performs when the DGP has homogenous state-
dependent and transition parameters. Specifically, the HMM with homogenous or latent-class parameters (3.18) performs best and
the HMM with individual-specific independent parameters (3.27) performs worst. In Table 4, we also indicate whether the param-
eters for the first four estimated models (in the first four columns) are significantly different from the corresponding parameter for
the RCMHMM (in the last column). For the first row, we find that when the DGP has homogenous parameters, the estimated
models with homogenous parameters and latent classes fit the data significantly better than the RCMHMM. The model with
individual-specific independent parameters fits the data significantly worse than the RCMHMM.

We can use the results in Table 4 to answer the two questions that motivated this simulation study. First: Under which con-
ditions does the RCMHMM perform relatively better or worse? HMMs with random coefficients, individual-specific independent,
and RCM state-dependent and transition parameters are relatively robust to the DGP, whereas HMMs with homogenous param-
eters or latent classes for the state-dependent and transition parameters perform worse. The RCMHMM performs best overall—
scoring either first or second (after the true model). Interestingly, the RCMHMM performs better than the HMM with
individual-specific independent parameters when the DGP has individual-specific independent parameters. Regarding data dimen-
sions, the number of individuals does not affect model performance (consistent with Ebbes et al., 2015). However, all models ex-
cept the HMM with random coefficients perform significantly better with more time periods (a negative coefficient indicates an
increase in model performance). Improvement is greatest for the RCMHMM (−0.46), indicating the RCMHMM performs better
with more time periods.
ter estimates for simulation study 2.

ulated factors Estimated model

Homogenous Random coefficients Latent classes Individual-specific independent Random-coefficients mixture

genous DGP 3.18a,b 3.23a 3.18a,b 3.27a,b 3.23a

m coefficients DGP 3.73a,b 3.27a 3.64a,b 3.27a 3.27a

t classes DGP 3.46a,b 3.32a,b 3.15a,b 3.31a,b 3.19a

dual-specific independent DGP 4.73a,b 3.34a,b 4.79a,b 3.28a,b 3.24a

m coefficients mixture DGP 3.93a,b 3.42a,b 3.61a,b 3.41a,b 3.27a

dividuals 0.03 −0.05 −0.03 0.06 0.01
me periods −0.17a,b −0.13b −0.22a,b −0.32a,b −0.46a

ed variable present 4.12a,b 3.88a,b 4.01a,b 3.77a,b 3.52a

a distribution 0.64a,b 0.36a 0.59a,b 0.64a,b 0.25a

he dependent variable is the average WAIC per observation. Parameter estimates indicate how each factor affects model performance. Lower values indi-
ter performance.
icates that the parameter is significantly different from zero at α = 0.05.
icates that the parameter for the corresponding estimated model is significantly different from the corresponding parameter for the random-coefficients mix-
M at α = 0.05.
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Second: How robust is the RCMHMM when the underlying model assumptions are violated? The RCMHMM performs better
than other models when an omitted variable is present in the DGP (i.e., it has the smallest coefficient among all estimated models,
indicating that model performance suffers least for the RCMHMM. The RCMHMM also performs significantly better than other
models, except the HMM with random coefficients, when researchers specify the incorrect error distribution. Hence, we conclude
that the RCMHMM is relatively robust when underlying model assumptions are violated.

5. Empirical application: Major League Baseball (MLB)

We focus on the effectiveness of in-game promotions in increasing the short-term demand for MLB attendance. MLB consists of
30 professional baseball teams in the U.S. and Canada, each of which plays a 162-game regular season (81 home games and
81 away games). Methodologically, this is an ideal context for the RCMHMM, as the demand for attendance can vary both over
the course of the season (facilitating hidden states) and across teams (facilitating latent classes). Practically, regular-season atten-
dance fell to 74,026,895 in 2013 (MLB, 2013)—just over 70% of total stadium capacity. Multiplying the number of unsold tickets by
the average ticket price of $27.48 (Team Marketing Report, 2013), MLB forfeited over $850 million in potential revenue. Thus, the
demand for attendance has important implications for MLB.

5.1. The data

We collected data related to the demand for MLB attendance for all 2430 games played during the 2013 regular season.6 Past at-
tendance research typically uses either raw attendance (Boyd & Krehbiel, 1999, 2003, 2006; DeSarbo, Hwang, Stadler Blank, & Kappe,
2015; Kappe, Stadler Blank, & DeSarbo, 2014; Lemke et al., 2010) or the log of raw attendance (Borland & Lye, 1992; Lemke et al.,
2010; Peel & Thomas, 1988; Siegfried & Eisenberg, 1980) as the dependent variable. We use the log of attendance because it “is
easy to interpret and explains a greater fraction of the variation in attendance” (Siegfried & Eisenberg, 1980, p. 60), allows us to in-
terpret parameters as elasticities, and allows us to compare estimates across teams, which all benefit the managerial interpretability
of results.7

Our primary interest is the effectiveness of in-game promotions in increasing short-term demand for attendance. We are spe-
cifically interested in promotions because it is one of the few variables MLB teams can control. We recorded the promotions listed
on each team's website every day of the 2013 season and classified each promotion into one of four promotional categories
(i.e., entertainment, event, giveaway, or price promotions) to conserve degrees of freedom (see Table 5). We observe substantial
variation across teams in terms of the number of promotions employed in each category as well as total promotions (see Table 6).

There is some preliminary evidence that promotional effectiveness varies over the course of the season and across teams. First, pro-
motional effectiveness may vary over the course of the season because of changes in fans' preferences to attend games (e.g., due to
team performance or distinct milestones within the season—the MLB draft, All-Star break, trade deadline, mathematical elimination
from playoff contention, etc.). This argument is akin to differential effectiveness of marketing mix variables over a product's lifecycle
(Narayanan,Manchanda, & Chintagunta, 2005; Parsons, 1975; Thietart & Vivas, 1984). Supporting this notion, Lemke et al. (2010) find
that giveaways aremore effective in April andMay (vs. June through August) and fireworks aremore effective in June through August
(vs. September); McDonald and Rascher (2000) demonstrate that increasing the number of promotions decreases the marginal effect
of each promotion over the course of the season; and Boyd and Krehbiel (1999) show that the effectiveness of promotions can differ
across multiple seasons. Second, promotional effectiveness may vary across teams because teams operate in different markets with
distinct fan bases. Indeed, past research shows that the effectiveness of in-game promotions varies by team (Boyd & Krehbiel, 1999,
2003) and that promotions are more effective for small-market and poorer-performing teams (Lemke et al., 2010; Marcum &
Greenstein, 1985).While this work offers initial support that promotional effectiveness varies over the course of the season and across
teams, it tests variation via split-sample regressions (i.e., the unobserved heterogeneity structure is imposed a priori). Because an in-
correct specification of the unobserved heterogeneity structure biases parameters andmanagerial insights, we allow these short-term
promotional effects to vary over time and across teams in the RCMHMM.

Finally, we gathered (and control for) a number of other variables related to the demand for MLB attendance (DeSarbo et al.,
2015; Lemke et al., 2010) (see Table 7).

5.2. Model specification

Note that attendance is censored at stadium capacity when a game is sold out, making it important to account for right-
censoring (Lemke et al., 2010) in the state-dependent equation8:
6 MLB
Second
sportsb

7 Wh
that two

8 We

Pleas
tiona
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it j Sit ¼ sð Þ ¼ β0

imsXit þ δ0Zit þ εit; ð6Þ
defines attendance as ticket sales (vs. fanswho attend).We classified one CIN homegame as an SFG homegame because the gamewas played in San Francisco.
ary data came from: www.mlb.com, www.baseball-reference.com, www.pro-football-reference.com, www.hockey-reference.com, www.mls.com, www.
ookreview.com, www.wunderground.com, www.teammarketing.com, and Badenhausen, Ozanian, and Settimi (2013).
ile percent of stadium capacity is another option, variation in stadium size (e.g., OAK = 34,077 vs. LAD= 56,000) may cause this variable to be misleading in
identical percentages may have different managerial and financial implications.
also right-censored approximately 5% of observations above stadium capacity (which occurs when teams sell standing room only tickets).
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Table 5
MLB promotions by category.

Entertainment Event Giveaway Price

Concert Appreciation Accessory Discounted food and beverage
Festival Autographs Automotive Discounted tickets
Fireworks Awareness Bag Ticket package with food and beverage

Charity Baseball Ticket package with giveaway
Education Beverage
Faith Bobblehead
History Card
Kids/family Clothing
Military/first responders Coupon
On-field Figurine
Pet Headwear
Run the bases Jersey
Student Kids
Theme Memorabilia

Miscellaneous
Rally
Schedule
Technology
T-shirt
Wall hanging

Table 6
Descript

Team

Arizon
Atlan
Baltim
Bosto
Chica
Chica
Cincin
Cleve
Color
Detro
Houst
Kansa
Los A
Los A
Miam
Milwa
Minn
New Y
New Y
Oakla
Philad
Pittsb
San D
Seattl
San F
St. Lo
Tamp
Texas
Toron
Wash
Mean

10 E. Kappe et al. / International Journal of Research in Marketing xxx (2018) xxx–xxx

Pleas
tiona
Attit ¼ D�
it if D

�
it b Ci;

Attit ¼ Ci if D
�
it ≥ Ci; and

βims � N βms;ΣβmsI
� �

: ð7Þ
ive statistics for MLB attendance and promotions.

Average
attendance

Stadium
capacity

No. of entertainment
promotions

No. of event
promotions

No. of giveaway
promotions

No. of price
promotions

No. of total
promotions

a Diamondbacks (ARI) 26,355 48,633 19 37 23 29 108
ta Braves (ATL) 31,465 49,377 27 68 9 38 142
ore Orioles (BAL) 29,106 45,971 4 55 15 18 92
n Red Sox (BOS) 34,979 37,495 0 116 0 16 132
go Cubs (CHC) 32,626 41,160 0 26 45 4 75
go White Sox (CHW) 22,186 40,615 20 32 23 1 76
nati Reds (CIN) 31,151 42,319 18 13 25 33 89
land Indians (CLE) 19,706 42,241 36 37 18 15 106
ado Rockies (COL) 34,492 50,398 6 31 41 37 115
it Tigers (DET) 38,067 41,255 20 38 40 4 102
on Astros (HOU) 20,394 40,963 18 18 25 34 95
s City Royals (KCR) 21,614 37,903 26 57 27 37 147
ngeles Angels (LAA) 37,278 45,957 20 16 27 117 180
ngeles Dodgers (LAD) 46,216 56,000 28 15 41 0 84
i Marlins (MIA) 19,584 37,000 26 88 14 98 226
ukee Brewers (MIL) 31,248 41,900 0 19 29 90 138
esota Twins (MIN) 30,588 39,021 12 53 57 44 166
ork Mets (NYM) 26,677 41,480 6 105 37 94 242
ork Yankees (NYY) 40,489 50,281 0 3 43 0 46
nd Athletics (OAK) 22,337 34,077 8 25 29 24 86
elphia Phillies (PHI) 37,190 43,500 4 62 32 26 124
urgh Pirates (PIT) 28,281 38,362 11 16 45 3 75
iego Padres (SDP) 26,749 43,633 9 48 19 10 86
e Mariners (SEA) 21,747 47,860 4 28 30 50 112
rancisco Giants (SFG) 41,603 41,915 2 10 30 2 44
uis Cardinals (STL) 41,602 46,861 26 36 36 11 109
a Bay Rays (TBR) 18,646 36,973 8 5 22 26 61
Rangers (TEX) 38,710 48,114 18 16 24 25 83
to Blue Jays (TOR) 31,316 48,278 9 37 15 8 69
ington Nationals (WSN) 32,746 41,418 8 38 15 94 155

30,505 43,365 13 38 28 33 112
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Table 7
MLB attendance drivers.

Attendance driver Predictor variable(s)

Broadcast and electronic media Game broadcast on network TV dummy
Game schedule characteristics Day (vs. evening) game dummy

Day of the week dummies
Month dummies
Holiday dummy

Home team Home team dummies
Opponent Opponent dummies

Distance from home team in thousands of miles
Performance Home team winning percentage (0 to 1)

Opponent winning percentage (0 to 1)
Home team number of games back (vs. division leader)a

Opponent number of games back (vs. division leader)a

Probability that the home team wins (0 to 1)b

Competitiveness of the game (0 to 0.5)b

Pricing Ticket price in USD ($)c

Promotions Number of entertainment promotions
Number of event promotions
Number of giveaway promotions
Number of price promotions

Substitute forms of entertainment Number of competing MLB, MLS, NBA, NFL, or NHL events
Weather Temperature in °F

Precipitation in inches

a Calculated by: [(division leader wins − team wins) + (team losses − division leader losses)] / 2.
b Calculatedusing themoney line for each game;we followed Lemke et al. (2010, pp. 326–327) for theprobability that the home

teamswins and subtracted0.5 from its absolute value to determine competitiveness of the game (the closer this value is to zero, the
more competitive the game).

c Because not all teams used dynamic pricing in 2013, we recorded fixed/variable pricing for each game at the beginning of the
season for a representative section of the ballpark (i.e., upper level, centermost section). Although not including dynamic pricing is
a limitation, most tickets subject to dynamic pricing (e.g., 90% in Zhu, 2014) are sold before dynamic pricing kicks in (typically
about two weeks before the game) (Xu, Fader, & Veeraraghavan, 2016).

11E. Kappe et al. / International Journal of Research in Marketing xxx (2018) xxx–xxx
Here, Dit
∗ ∣ (Sit = s) represents the log of the latent demand for attendance, conditional on team i belonging to hidden state

s ∈ {1,…,S} at game t. Attit denotes the observed log of attendance and each team has its own right-censoring limit, Ci, which
equals the log of the stadium capacity for team i. βims is a Kx1 vector of parameters for team i in latent class m and hidden
state s measuring the impact of the log-transformed, endogenous explanatory variables Xit. δ is an Lx1 vector that captures param-
eters that are common across teams and hidden states and measures the impact of the log-transformed, exogenous explanatory
variables Zit. We assume that the error term, εit, is i.i.d. normally distributed—but relax this assumption when we account for po-
tential endogeneity.

To select variables for the X and Z matrices, we distinguish between our primary variables of interest and the other attendance
drivers listed in Table 7. We include the four promotional categories in X and the remaining attendance drivers along with lagged
attendance (to capture any unobserved dynamic effects) and fixed effects for each home team and opponent in Z.9 In Eq. (3), Wit

represents a vector of transition variables, including a constant. In Eq. (5), γimss′ measures the impact of these transition variables
for team i, belonging to latent class m, for a move from state s to state s′. To select variables for the W matrix, we build on
past attendance research, which suggests that promotional effectiveness may change over time, with team performance, and
corresponding playoff propensity (e.g., Lemke et al., 2010; Marcum & Greenstein, 1985). Thus, we test four sets of transition
variables—including time (operationalized as home game number), the number of games back the team is from the division
leader, the probability that the team reaches the playoffs, and all three variables combined.
5.3. Estimation

We update our estimation routine to allow for the censoring of the dependent variable and correction for endogeneity (which
may arise if MLB teams design their promotional schedule strategically). To correct for endogeneity, we include instrumental var-
iables for the promotional variables (Rossi, 2014) and include a full covariance matrix for the error terms (see Web Appendix C for
details). To estimate the model, we discard the first home game for each team due to the presence of lagged attendance in our
model and follow the procedure in Section 2.4. First, we estimate the model with the appropriate number of latent classes
(where applicable) but without hidden states. For the parameters that do not vary across hidden states, we use the resulting es-
timates as starting values. For the parameters that vary across hidden states, we use different percentiles of the estimates as
starting values to aid convergence (see Web Appendix A for details).
9 The home team fixed effects capture season ticket holders while the promotional effects capture the impact of in-game promotions on non-season ticket holders.
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Table 8
Model selection for empirical application based on the WAIC.

State-dependent parameters Transition parameters WAIC

Homogenous parameters Homogenous parameters (s = 4) −1547.47 (17)
Random coefficients (s = 4) −1768.40 (12)
Latent classes (m = 6, s = 3) −1573.49 (16)
Individual-specific independent parameters (s = 4) −1601.92 (15)

Random coefficients Homogenous parameters (s = 2) −1903.78 (5)
Random coefficients (s = 5) −1951.26 (2)
Latent classes (m = 5, s = 2) −1911.92 (4)
Individual-specific independent parameters (s = 3) −1922.16 (3)

Latent classes Homogenous parameters (m = 6, s = 2) −1848.72 (9)
Random coefficients (m = 6, s = 2) −1864.52 (6)
Latent classes (m = 6, s = 2) −1854.22 (8)
Individual-specific independent parameters (m = 5, s = 2) −1855.62 (7)

Individual-specific independent parameters Homogenous parameters (s = 2) −1650.75 (14)
Random coefficients (s = 3) −1833.48 (10)
Latent classes (m = 2, s = 2) −1794.13 (11)
Individual-specific independent parameters (s = 2) −1754.67 (13)

RCM RCM (m = 2, s = 2) −1966.48 (1)

Notes. We provide the optimal number of latent classes (m) and hidden states (s) and rank each model from 1 (the best) to 17 (the worst) (in parentheses).
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5.4. Results

Results are based on 100,000 iterations of the MCMC sampler—half of which we discarded for burn-in. We retained every 25th
draw and found no significant autocorrelation in the draws after thinning. The Gelman and Rubin (1992) test statistic for conver-
gence was below the 1.1 threshold for over 90% of the parameters in each HMM based on three independent chains with dis-
persed starting values, indicating convergence.

5.4.1. Model selection
First, we select the transition variable and estimate the RCMHMM. Models that include a constant and the number of games

back from the division leader as the transition variable perform best according to the WAIC. Next, we estimate all 16 nested
model versions, selecting the optimal number of latent classes and hidden states for each model using the WAIC. The results
based on the DIC and RMSPE are in Tables WA-D1 and WA-D2 in Web Appendix D. Note that the RMSPE is now based on the
in-sample observations. We report and rank model performance based on the WAIC as well as the optimal number of latent clas-
ses and hidden states for each model in Table 8. The WAIC, DIC, and RMSPE all point to our proposed RCMHMM with two latent
class and two hidden states as the best model (see Table WA-D3 in Web Appendix D for results of the RCMHMM with a varying
number of latent classes and hidden states). We also computed posterior model probabilities based on the WAIC (Burnham &
Anderson, 2004) and the probability that the HMM with an RCM specification for both the state-dependent and transition param-
eters is the best model is N0.999.10 As in our simulation studies, we see that a suboptimal unobserved heterogeneity structure
often leads to more latent classes and hidden states. Thus, while the RCMHMM is more complex, it leads to a more parsimonious
solution than its nested versions. Finally, we tested five additional models where we account for unobserved heterogeneity in the
state-dependent parameters (i.e., homogeneous, random coefficients, latent classes, individual-specific independent, and RCM) but
not in the transition parameters (i.e., there is only one hidden state). The RCMHMM performs better than these five models (see
Table WA-D4 in Web Appendix D).

5.4.2. Parameter estimates
In this section, we discuss the results of our “best” model—the RCMHMM with two latent classes and two hidden states. See

Web Appendix D for parameters that do not vary over time or across teams and the parameters we used to control for
endogeneity.

5.4.2.1. Latent class membership. Before interpreting latent classes, we evaluated label switching but did not find much evidence
after burn-in in our main model. To interpret the latent classes (see Table 9), we correlated membership probabilities with various
team-specific variables. We interpret the latent classes by the team-specific variables that are correlated with latent class member-
ship (p b .05). Teams in the first latent class have lower ticket prices (r = −0.51), percent stadium capacity filled (r = −0.39),
and ticket revenue (r = −0.46), which results in more wins per dollar of ticket revenue (r = 0.48) and total revenue (r =
0.40) as well as more wins per dollar spent on player expenses (r = 0.38). As we only have two latent classes, the second latent
class is the opposite of the first. Based on these correlations, we argue that latent class 1 is more efficient given financial resources.
Thus, we label latent class 1 “overachievers,” as performance exceeds expectations based on financial resources, and latent class 2
“underachievers,” as performance falls short of expectations based on financial resources.
10 Holdout sample prediction may help when two or more models have similar performance.
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Table 9
Latent class membership.

Latent class 1
(overachievers)

Latent class 2
(underachievers)

ATLa ARI
BAL BOSa

CINa CHC
CLEa CHW
DETa COL
HOU LADa

KCR MIA
LAA MIL
NYM MIN
PITa NYY
SDP OAKa

SEA PHI
TBRa SFG
TEX STLa

TOR WSN

a Indicates teams that made the 2013 post-season playoffs.
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5.4.2.2. Transition parameters. We report the results for the population mean of the transition parameters γmss0 in Table 10 (see
Table WA-D5 in Web Appendix D for the population variance parameters, Σγmss′). Recall that the transition variable is the number
of games back from the division leader, which is measured using positive numbers. Larger values indicate poorer performance, as
the gap between a team and its division leader expands. Teams are 7.5 games back on average. In other words, the average team
lost 7.5 more games than its division leader.

We model the probability that a team transitions from state 1 in game t-1 to state 2 in game t, as well as the probability that
the team stays in state 2 to achieve identification. Based on the initial state probabilities (0.67 for state 1 and 0.33 for state 2),
more teams begin the season in state 1. For both latent classes, the constant for moving from state 1 to state 2 is negative
(−2.21 and −0.83, respectively), indicating that division leaders (at zero games back) in state 1 are more likely to stay in state
1 than to move to state 2. The difference between these two constants is significant (p = .02). For both overachievers and under-
achievers, the probability of moving from state 1 to state 2 increases with the number of games back from the division leader
(0.30 and 0.09, respectively). The difference between these parameters is not significant (p = .12). So as performance declines
(relative to the division leader), teams in state 1 are more likely to transition to state 2. After a team transitions to state 2, the
probability of staying there increases with the number of games back from the division leader for both overachievers (0.23)
and underachievers (0.39). So, as team performance declines (relative to the division leader), teams are more likely to stay in
state 2. Based on these findings, we label state 1 “high-performance” and state 2 “low-performance.” While more teams begin
the season in the high-performance state, we find that teams spend more time in the low-performance state during our data pe-
riod (53% of time periods for overachievers and 56% for underachievers, on average), which makes intuitive sense in that over half
of MLB teams do not make the playoffs.

5.4.2.3. State-dependent parameters.We summarize the results for βms, the population mean for the parameters that vary over the
course of the season (hidden states) and across teams (latent classes) in Table 11 (see Table WA-D6 in Web Appendix D for the
population variance parameters, Σβms). We begin with the results for the high-performance state. For overachievers, entertainment
and giveaway promotions increase the demand for attendance (i.e., a 1% increase in entertainment and giveaway promotions in-
creases the demand for attendance by 0.31% and 0.28%, respectively). These effects are significantly greater than the effects for
event and price promotions. For underachievers, only giveaways are significant, and this effect is significantly greater than the ef-
fects for event and price promotions. The results for the low-performance state tell a somewhat different story. For overachievers,
while still significant, entertainment and giveaway promotions are less effective, and event promotions become significant. The
Table 10
Transition parameters.

Latent class 1
(overachievers)

Latent class 2
(underachievers)

Median 2.50% 97.50% Median 2.50% 97.50%

Switch from state 1 to state 2
(high- to low-performance)

Constant −2.21a −3.25 −1.32 −0.83 −1.58 0.01
Home team number of games back
(vs. division leader)

0.30a 0.02 0.66 0.09a 0.02 0.16

Stay in state 2
(low-performance)

Constant −1.46a −2.14 −0.27 −2.26a −3.03 −1.55
Home team number of games back
(vs. division leader)

0.23a 0.15 0.30 0.39a 0.23 0.73

a Indicates that the parameter is significantly different from zero based on the 95% confidence interval.
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Table 11
State-dependent parameters.

Variable Latent class 1
(overachievers)

Latent class 2
(underachievers)

Median 2.50% 97.50% Median 2.50% 97.50%

State 1
(high-performance)

No. of entertainment promotions 0.31a 0.09 0.57 0.07 −0.02 0.16
No. of event promotions 0.04 −0.06 0.15 −0.03 −0.11 0.07
No. of giveaway promotions 0.28a 0.10 0.43 0.14a 0.09 0.21
No. of price promotions 0.07 −0.04 0.15 0.05 −0.02 0.12

State 2
(low-performance)

No. of entertainment promotions 0.15a 0.09 0.21 0.14a 0.10 0.19
No. of event promotions 0.05a 0.01 0.09 0.07a 0.01 0.13
No. of giveaway promotions 0.10a 0.05 0.16 0.08a 0.02 0.14
No. of price promotions 0.02 −0.02 0.05 0.04 −0.01 0.10

a Indicates that the parameter is significantly different from zero based on the 95% confidence interval.
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effect for entertainment promotions is significantly greater than the effect for event and price promotions and the effect of give-
aways is significantly greater than the effect for price promotions. For underachievers, entertainment and event promotions be-
come significant and giveaways are less effective.

These results lead to three valuable managerial insights. First, while event and price promotions were the most commonly
used, these categories are the least effective. Second, concerning the two latent classes, the average promotional effectiveness
for overachievers (0.13) is almost twice that of underachievers (0.07). This makes sense in that overachieving teams need to be
more creative/strategic in planning promotions to increase the demand for attendance. Promotions may also be especially effective
for overachievers given that the average ticket price ($22.75) is about one-third lower than underachievers ($32.22); thus, promo-
tions for overachievers provide fans with more value or bang for their buck. Finally, concerning hidden states, the average effect
across promotional categories for games in the high-performance state (0.12) is somewhat higher than for games in the low-
performance state (0.08) (although this pattern only holds for overachievers).

5.4.2.4. Alternative specifications. We also compare the results of the RCMHMM to the next best model in Table 8—an HMM with
random coefficients for both the state-dependent and transition parameters (the most popular HMM in marketing). This model
has five hidden states and is less parsimonious than the RCMHMM (while models with three, four, and five hidden states were
not significantly different, the model with five hidden states had the lowest WAIC). We highlight a few major insights from
this model. While the effects of the four promotional categories averaged across hidden states and teams are fairly comparable,
the effects of each promotional category at the team level are quite different. To compare estimates at the team level, we extracted
the average effectiveness of each of the four promotional categories for all 30 teams (across hidden states). This resulted in a vec-
tor of 120 promotional effects for each model. The correlation between the two vectors was only 0.59, supporting our argument
that specifying a suboptimal unobserved heterogeneity structure leads to biased results and managerial insights.

5.5. Managerial implications

Using results from the RCMHMM, we can answer three managerial questions related to promotional schedule design (we focus
on relatively minor changes to stay within the variation of our data and avoid the Lucas (1976) critique). First, what promotions
are most effective? Teams could decrease the frequency of less effective promotions and increase the frequency of more effective
promotions. For example, if NYM replaced 10 event promotions with 10 entertainment promotions—irrespective of the hidden
state—revenues would increase by 33.6% or $2.27 million. Second, when are promotions most effective? Teams could rearrange
promotions based on the recovery of hidden states to ensure that promotions are employed in the period when they are most
effective. For example, if WSN (an underachiever that spent 46% of the season in the low-performance state) swapped 10 event
promotions with 10 giveaways during high-performance periods, and vice versa during periods of low performance, revenues
for those 20 games would increase by 12.6% or $2.15 million. Third, when should teams update their promotional schedule during
the season? On average, teams have equal probabilities of being in the high- and low-performance state at around 7.5 games back
from the division leader. Thus, teams could update promotional schedules as soon as they go below or above this benchmark. For
example, while COL was below this benchmark until home game 56, by home game 57, they were 13 games back and never
returned below this benchmark for the remainder of the season. If COL (underachievers) updated the promotional schedule
after home game 56, any game with an additional entertainment promotion would have increased revenues by 24% or $200,000.

6. Conclusion

We propose a new random coefficients mixture HMM (RCMHMM) that allows for flexible patterns of unobserved heterogene-
ity in both the state-dependent and transition parameters in an HMM framework. The RCMHMM nests all previous HMMs found
in the marketing literature and enables researchers to test and select the best unobserved heterogeneity structure for their data.
Failure to do so can lead to biased parameters and inaccurate managerial insights (as we confirm in simulation study 1). We
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apply the RCMHMM to two simulation studies and averaging across the 17 different data generating processes we test, the
RCMHMM outperforms its 16 nested versions. We also apply the RCMHMM to an empirical application and show that the
RCMHMM outperforms its 16 nested versions as well as several additional benchmark models.

Our simulation studies answer four questions. First, under which conditions does the RCMHMM beat its nested model ver-
sions? The RCMHMM performs better than its nested versions when more complex unobserved heterogeneity structures are
present in the data. The HMM with random coefficients for both the state-dependent and transition parameters, the state-of-
the-art HMM in marketing, performs second-best. Comparing these two models, the RCMHMM performs better when the unob-
served heterogeneity structure is multimodal. When the unobserved heterogeneity structure is unimodal, the performance of both
models is similar (as the RCMHMM perfectly nests the HMM with random-coefficient state-dependent and transition parameters).
Thus, when there is theoretical or empirical evidence to suggest that the unobserved heterogeneity structure is multimodal, the
RCMHMM will reduce bias and improve managerial insights, but when there is evidence that the structure is unimodal, the
random-coefficients HMM suffices. Second, under which conditions is the additional flexibility of the RCMHMM harmful?
The RCMHMM performs somewhat worse when the true model includes either homogeneous parameters or latent classes for
the state-dependent parameters or latent classes for the transition parameters. When this is the case, researchers can employ
more diffuse priors for the population variance parameters to improve RCMHMM performance. Third, under which conditions
does the RCMHMM perform relatively better or worse? The RCMHMM is relatively robust to the DGP and performs better
when more time periods are available in the data. The specific number of time periods necessary to reliably estimate the
RCMHMM depends on the empirical application and data at hand (e.g., amount of variation in the data, distribution of the latent
classes and hidden states, nature of the dependent variable). Fourth, how robust is the RCMHMM when the underlying assump-
tions of the RCMHMM are violated? The RCMHMM is more robust than its nested versions when an omitted variable is present in
the data or when the error distribution is misspecified.

In our empirical application, we investigate the effectiveness of in-game promotions in increasing the short-term demand for
MLB attendance and find that promotional effectiveness varies over the course of the season and across teams. Thus, the
RCMHMM performs best. We offer three valuable managerial insights: 1) the average effectiveness of entertainment and giveaway
promotions is highest—even though event and price promotions were employed most often, 2) promotional effectiveness is higher
for overachieving teams than underachieving teams, and 3) promotional effectiveness changes for both overachievers and under-
achievers when teams transition from a high-performance to a low-performance state. As a result, MLB teams could benefit from
knowing which latent class they belong to and which hidden state they are in.

While the RCMHMM performs best in our simulation studies and empirical application, the optimal unobserved heterogeneity
structure for other applications remains an open question. The ability of the RCMHMM to test a number of alternative unobserved
heterogeneity structures makes it possible for researchers to select the most appropriate structure across a variety of applications
using a single model. We believe that the RCMHMM could be valuable in panel data contexts where the effects for cross-sectional
units may vary over time. Examples range from the latent relationship between a firm and consumer (Netzer et al., 2008) to
modeling latent attrition (Schweidel & Knox, 2013), missing competitive firm data (Moon et al., 2007), or biases in survey re-
sponses (Yang et al., 2010). Finally, as we illustrate in this paper, researchers could use the RCMHMM to identify how marketing
mix variables vary over time and across individuals (Montoya et al., 2010).

As with all research, our work has limitations that provide opportunities for future research. First, we focus on the RCMHMM
and its 16 nested versions to control for unobserved heterogeneity. However, other promising approaches exist to incorporate un-
observed heterogeneity, such as Dirichlet process priors (e.g., Ansari & Mela, 2003; Voleti & Ghosh, 2013) or a model in which
each coefficient has its own finite mixture (Ebbes et al., 2015). Future research could combine either of these approaches with
the HMM and assess its performance relative to our proposed RCMHMM. Next, while our estimation algorithm accurately recov-
ered all parameters in a reasonable amount of time, the size of the datasets in our simulation studies and empirical application
were relatively small. Future research could examine more efficient estimation procedures when applying the RCMHMM to larger
datasets (with thousands of cross-sectional and/or time series observations) or when making real-time decisions (e.g., Foti, Xu,
Laird, & Fox, 2014). Ultimately, we hope the RCMHMM helps researchers and practitioners make better decisions across a variety
of contexts.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijresmar.2018.07.002.
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